Baroreflex Coupling Assessed by Cross-Compression Entropy
نویسندگان
چکیده
Estimating interactions between physiological systems is an important challenge in modern biomedical research. Here, we explore a new concept for quantifying information common in two time series by cross-compressibility. Cross-compression entropy (CCE) exploits the ZIP data compression algorithm extended to bivariate data analysis. First, time series are transformed into symbol vectors. Symbols of the target time series are coded by the symbols of the source series. Uncoupled and linearly coupled surrogates were derived from cardiovascular recordings of 36 healthy controls obtained during rest to demonstrate suitability of this method for assessing physiological coupling. CCE at rest was compared to that of isometric handgrip exercise. Finally, spontaneous baroreflex interaction assessed by CCEBRS was compared between 21 patients suffering from acute schizophrenia and 21 matched controls. The CCEBRS of original time series was significantly higher than in uncoupled surrogates in 89% of the subjects and higher than in linearly coupled surrogates in 47% of the subjects. Handgrip exercise led to sympathetic activation and vagal inhibition accompanied by reduced baroreflex sensitivity. CCEBRS decreased from 0.553 ± 0.030 at rest to 0.514 ± 0.035 during exercise (p < 0.001). In acute schizophrenia, heart rate, and blood pressure were elevated. Heart rate variability indicated a change of sympathovagal balance. The CCEBRS of patients with schizophrenia was reduced compared to healthy controls (0.546 ± 0.042 vs. 0.507 ± 0.046, p < 0.01) and revealed a decrease of blood pressure influence on heart rate in patients with schizophrenia. Our results indicate that CCE is suitable for the investigation of linear and non-linear coupling in cardiovascular time series. CCE can quantify causal interactions in short, noisy and non-stationary physiological time series.
منابع مشابه
Mechanisms of causal interaction between short-term RR interval and systolic arterial pressure oscillations during orthostatic challenge.
The transition from the supine to the upright position requires a reorganization of the mechanisms of cardiovascular control that, if not properly accomplished, may lead to neurally mediated syncope. We investigated how the patterns of causality between systolic arterial pressure (SAP) and cardiac RR interval were modified by prolonged head-up tilt using a novel nonlinear approach based on corr...
متن کاملMeasuring Coupling of Rhythmical Time Series Using Cross Sample Entropy and Cross Recurrence Quantification Analysis
The aim of this investigation was to compare and contrast the use of cross sample entropy (xSE) and cross recurrence quantification analysis (cRQA) measures for the assessment of coupling of rhythmical patterns. Measures were assessed using simulated signals with regular, chaotic, and random fluctuations in frequency, amplitude, and a combination of both. Biological data were studied as models ...
متن کاملBaroreflex-mediated cardiovascular responses to hyperbaric oxygen.
The cardiovascular system responds to hyperbaric hyperoxia (HBO2) with vasoconstriction, hypertension, bradycardia, and reduced cardiac output (CO). We tested the hypothesis that these responses are linked by a common mechanism-activation of the arterial baroreflex. Baroreflex function in HBO2 was assessed in anesthetized and conscious rats after deafferentation of aortic or carotid barorecepto...
متن کاملEntropy-based pattern matching for document image compression
In this paper, we introduce a pattern matching algorithm used in document image compression. This pattern matching algorithm uses the cross entropy between two patterns as the criterion for a match. We use a physical model which is based on the nite resolution of the scanner (spatial sampling error) to estimate the probability values used in cross entropy calculation. Experimental results show ...
متن کاملMeasuring Electromechanical Coupling in Patients with Coronary Artery Disease and Healthy Subjects
Coronary artery disease (CAD) is the most common cause of death globally. To detect CAD noninvasively at an early stage before clinical symptoms occur is still nowadays challenging. Analysis of the variation of heartbeat interval (RRI) opens a new avenue for evaluating the functional change of cardiovascular system which is accepted to occur at the subclinical stage of CAD. In addition, systoli...
متن کامل